更多>>精华博文推荐
更多>>人气最旺专家

宋休公

领域:新华社

介绍:这标明①最高行政机关必须向全国人大负责②国家机关必须贯彻依法治国原则③全国人大具有执法和检查职能④人大常委会是人大最高权力机关A.①②B.①③C.②④D.③④人大代表的权利提案权:经调研就某问题写成草案向人大提出的权利审议权:审查、讨论,发表意见表决权:表示赞成或反对或弃权的决定权利质询权:对政府工作提出问题并要求答复权利在G市2006年召开的人民代表大会上,人大代表就G市该年的财政预算案提出了许多批评意见,财政局长几次到会就预算中的一些问题回答代表的提问。...

长孙氏

领域:华夏生活

介绍:C考点二 人口增长模式及其转变3.(2013·高考广东卷)下表为四个国家的主要人口指标。利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新

利来国际最老牌手机板
本站新公告利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
8bs | 2019-01-22 | 阅读(610) | 评论(785)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
u8z | 2019-01-22 | 阅读(4) | 评论(278)
福建省10个代表团的200多名选手们努力克服生理障碍,全力赴赛,充分展示了精湛的职业技能、不屈的意志和顽强进取、乐观向上的良好精神风貌。【阅读全文】
my9 | 2019-01-22 | 阅读(942) | 评论(486)
人类对遗传物质的探索过程高考考点考纲要求人类对遗传物质的探索过程Ⅱ染色体由DNA和蛋白质构成,那么DNA和蛋白质谁是遗传物质呢?一、对遗传物质的早期推测在20世纪20年代,由于人们已经认识到蛋白质是由多种氨基酸连接而成的生物大分子。【阅读全文】
yza | 2019-01-22 | 阅读(983) | 评论(390)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
hu7 | 2019-01-22 | 阅读(655) | 评论(241)
讲到那政治革命的结果,是建立民主立宪政体。【阅读全文】
ugc | 2019-01-21 | 阅读(398) | 评论(5)
检查时对一些指标性或者证明性资料,只需提供相应资料即可,不需单独制表或统计,因此切忌认为资料越多越好。【阅读全文】
opw | 2019-01-21 | 阅读(637) | 评论(136)
 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1【阅读全文】
8fb | 2019-01-21 | 阅读(771) | 评论(143)
正像唐修亮校长所谈到的那样,对于高考改革的基本认知应该是“跳出高考看一切”,而不是仅仅关注成绩和分数。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
ne7 | 2019-01-21 | 阅读(291) | 评论(414)
记者从冲绳县首府那霸市一路向北驱车1个半小时来到边野古地区,发现这里十分萧条。【阅读全文】
n7x | 2019-01-20 | 阅读(787) | 评论(659)
3、落款署名,日期。【阅读全文】
jf7 | 2019-01-20 | 阅读(691) | 评论(502)
外公的身子一半干一半湿是因为伞倾斜到我这边,他的身子一半暴露在雨中,被雨淋湿了。【阅读全文】
nep | 2019-01-20 | 阅读(68) | 评论(100)
通过一个月的学习,武装了头脑,更新了知识,提高了素质,振奋了精神,增加了干劲,促进了工作。【阅读全文】
fwm | 2019-01-20 | 阅读(668) | 评论(949)
全省10个代表团的200多名选手们努力克服生理障碍,全力赴赛,充分展示了精湛的职业技能、不屈的意志和顽强进取、乐观向上的良好精神风貌。【阅读全文】
oel | 2019-01-19 | 阅读(922) | 评论(257)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
xjv | 2019-01-19 | 阅读(705) | 评论(125)
2、自觉坚持党的根本宗旨,诚心诚意为人民谋利益。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-22

利来国际旗舰版 利来国际老牌 利来国际ag旗舰厅app 利来电游官方网站
w66.con 利来国际网站 利来国际娱乐官方 利来w66 利来国际老牌软件
利来国际老牌 老牌利来 利来国际官网 利来国际官方网站 www.v66利来国际
利来娱乐 利来娱乐 w66利来国际手机app w66历来国际 利来国际老牌博彩
闽侯县| 安多县| 二连浩特市| 邛崃市| 新邵县| 吉首市| 岳阳县| 成安县| 石屏县| 吉水县| 玉田县| 潢川县| 苗栗市| 梓潼县| 阜新| 石楼县| 寻乌县| 祁阳县| 高唐县| 来安县| 梨树县| 滦平县| 潞西市| 延庆县| 镇远县| 张家港市| 新乡县| 宜良县| 吴旗县| 长岭县| 安阳市| 郯城县| 连平县| 顺昌县| 密山市| 大城县| 郁南县| 门头沟区| 麟游县| 攀枝花市| 都匀市| http://m.85810605.cn http://m.77385990.cn http://m.07927733.cn http://m.34617067.cn http://m.03404506.cn http://m.20060149.cn